Pages

Showing posts with label fats. Show all posts
Showing posts with label fats. Show all posts

Dissolve Away those Pesky Bones with Corn Oil

I just read an interesting paper from Gabriel Fernandes's group at the University of Texas. It's titled "High fat diet-induced animal model of age-associated obesity and osteoporosis". I was expecting this to be the usual "we fed mice industrial lard for 60% of calories and they got sick" paper, but I was pleasantly surprised. From the introduction:
CO [corn oil] is known to promote bone loss, obesity, impaired glucose tolerance, insulin resistance and thus represents a useful model for studying the early stages in the development of obesity, hyperglycemia, Type 2 diabetes [23] and osteoporosis. We have used omega-6 fatty acids enriched diet as a fat source which is commonly observed in today's Western diets basically responsible for the pathogenesis of many diseases [24].
Just 10% of the diet as corn oil (roughly 20% of calories), with no added omega-3, on top of an otherwise poor laboratory diet, caused:
  • Obesity
  • Osteoporosis
  • The replacement of bone marrow with fat cells
  • Diabetes
  • Insulin resistance
  • Generalized inflammation
  • Elevated liver weight (possibly indicating fatty liver)
Hmm, some of these sound familiar... We can add them to the findings that omega-6 also promotes various types of cancer in rodents (1).

20% fat is less than the amount it typically takes to make a rodent this sick. This leads me to conclude that corn oil is particularly good at causing mouse versions of some of the most common facets of the "diseases of civilization". It's exceptionally high in omega-6 (linoleic acid) with virtually no omega-3.

Make sure to eat your heart-healthy corn oil! It's made in the USA, dirt cheap and it even lowers cholesterol!

The Body Fat Setpoint, Part III: Dietary Causes of Obesity

What Caused the Setpoint to Change?

We have two criteria to narrow our search for the cause of modern fat gain:
  1. It has to be new to the human environment
  2. It has to cause leptin resistance or otherwise disturb the setpoint
Although I believe that exercise is part of a healthy lifestyle, it probably can't explain the increase in fat mass in modern nations. I've written about that here and here. There are various other possible explanations, such as industrial pollutants, a lack of sleep and psychological stress, which may play a role. But I feel that diet is likely to be the primary cause. When you're drinking 20 oz Cokes, bisphenol-A contamination is the least of your worries.

In the last post, I described two mechanisms that may contribute to elevating the body fat set point by causing leptin resistance: inflammation in the hypothalamus, and impaired leptin transport into the brain due to elevated triglycerides. After more reading and discussing it with my mentor, I've decided that the triglyceride hypothesis is on shaky ground*. Nevertheless, it is consistent with certain observations:
  • Fibrate drugs that lower triglycerides can lower fat mass in rodents and humans
  • Low-carbohydrate diets are effective for fat loss and lower triglycerides
  • Fructose can cause leptin resistance in rodents and it elevates triglycerides (1)
  • Fish oil reduces triglycerides. Some but not all studies have shown that fish oil aids fat loss (2)
Inflammation in the hypothalamus, with accompanying resistance to leptin signaling, has been reported in a number of animal studies of diet-induced obesity. I feel it's likely to occur in humans as well, although the dietary causes are probably different for humans. The hypothalamus is the primary site where leptin acts to regulate fat mass (3). Importantly, preventing inflammation in the brain prevents leptin resistance and obesity in diet-induced obese mice (3.1). The hypothalamus is likely to be the most important site of action. Research is underway on this.

The Role of Digestive Health

What causes inflammation in the hypothalamus? One of the most interesting hypotheses is that increased intestinal permeability allows inflammatory substances to cross into the circulation from the gut, irritating a number of tissues including the hypothalamus.

Dr. Remy Burcelin and his group have spearheaded this research. They've shown that high-fat diets cause obesity in mice, and that they also increase the level of an inflammatory substance called lipopolysaccharide (LPS) in the blood. LPS is produced by gram-negative bacteria in the gut and is one of the main factors that activates the immune system during an infection. Antibiotics that kill gram-negative bacteria in the gut prevent the negative consequences of high-fat feeding in mice.

Burcelin's group showed that infusing LPS into mice on a low-fat chow diet causes them to become obese and insulin resistant just like high-fat fed mice (4). Furthermore, adding 10% of the soluble fiber oligofructose to the high-fat diet prevented the increase in intestinal permeability and also largely prevented the body fat gain and insulin resistance from high-fat feeding (5). Oligofructose is food for friendly gut bacteria and ends up being converted to butyrate and other short-chain fatty acids in the colon. This results in lower intestinal permeability to toxins such as LPS. This is particularly interesting because oligofructose supplements cause fat loss in humans (6).

A recent study showed that blood LPS levels are correlated with body fat, elevated cholesterol and triglycerides, and insulin resistance in humans (7). However, a separate study didn't come to the same conclusion (8). The discrepancy may be due to the fact that LPS isn't the only inflammatory substance to cross the gut lining-- other substances may also be involved. Anything in the blood that shouldn't be there is potentially inflammatory.

Overall, I think gut dysfunction probably plays a major role in obesity and other modern metabolic problems. Insufficient dietary fiber, micronutrient deficiencies, excessive gut irritating substances such as gluten, abnormal bacterial growth due to refined carbohydrates (particularly sugar), and omega-6:3 imbalance may all contribute to abnormal gut bacteria and increased gut permeability.

The Role of Fatty Acids and Micronutrients

Any time a disease involves inflammation, the first thing that comes to my mind is the balance between omega-6 and omega-3 fats. The modern Western diet is heavily weighted toward omega-6, which are the precursors to some very inflammatory substances (as well as a few that are anti-inflammatory). These substances are essential for health in the correct amounts, but they need to be balanced with omega-3 to prevent excessive and uncontrolled inflammatory responses. Animal models have repeatedly shown that omega-3 deficiency contributes to the fat gain and insulin resistance they develop when fed high-fat diets (9, 10, 11).

As a matter of fact, most of the papers claiming "saturated fat causes this or that in rodents" are actually studying omega-3 deficiency. The "saturated fats" that are typically used in high-fat rodent diets are refined fats from conventionally raised animals, which are very low in omega-3. If you add a bit of omega-3 to these diets, suddenly they don't cause the same metabolic problems, and are generally superior to refined seed oils, even in rodents (12, 13).

I believe that micronutrient deficiency also plays a role. Inadequate vitamin and mineral status can contribute to inflammation and weight gain. Obese people typically show deficiencies in several vitamins and minerals. The problem is that we don't know whether the deficiencies caused the obesity or vice versa. Refined carbohydrates and refined oils are the worst offenders because they're almost completely devoid of micronutrients.

Vitamin D in particular plays an important role in immune responses (including inflammation), and also appears to influence body fat mass. Vitamin D status is associated with body fat and insulin sensitivity in humans (14, 15, 16). More convincingly, genetic differences in the vitamin D receptor gene are also associated with body fat mass (17, 18), and vitamin D intake predicts future fat gain (19).

Exiting the Niche

I believe that we have strayed too far from our species' ecological niche, and our health is suffering. One manifestation of that is body fat gain. Many factors probably contribute, but I believe that diet is the most important. A diet heavy in nutrient-poor refined carbohydrates and industrial omega-6 oils, high in gut irritating substances such as gluten and sugar, and a lack of direct sunlight, have caused us to lose the robust digestion and good micronutrient status that characterized our distant ancestors. I believe that one consequence has been the dysregulation of the system that maintains the fat mass "setpoint". This has resulted in an increase in body fat in 20th century affluent nations, and other cultures eating our industrial food products.

In the next post, I'll discuss my thoughts on how to reset the body fat setpoint.

* The ratio of leptin in the serum to leptin in the brain is diminished in obesity, but given that serum leptin is very high in the obese, the absolute level of leptin in the brain is typically not lower than a lean person. Leptin is transported into the brain by a transport mechanism that saturates when serum leptin is not that much higher than the normal level for a lean person. Therefore, the fact that the ratio of serum to brain leptin is higher in the obese does not necessarily reflect a defect in transport, but rather the fact that the mechanism that transports leptin is already at full capacity.

Saturated Fat and Insulin Sensitivity

Insulin sensitivity is a measure of the tissue response to insulin. Typically, it refers to insulin's ability to cause tissues to absorb glucose from the blood. A loss of insulin sensitivity, also called insulin resistance, is a core part of the metabolic disorder that affects many people in industrial nations.

I don't know how many times I've seen the claim in journal articles and on the internet that saturated fat reduces insulin sensitivity. The idea is that saturated fat reduces the body's ability to handle glucose effectively, placing people on the road to diabetes, obesity and heart disease. Given the "selective citation disorder" that plagues the diet-health literature, perhaps this particular claim deserves a closer look.

The Evidence
I found a review article from 2008 that addressed this question (1). I like this review because it only includes high-quality trials that used reliable methods of determining insulin sensitivity*.

On to the meat of it. There were 5 studies in which non-diabetic people were fed diets rich in saturated fat, and compared with a group eating a diet rich in monounsaturated (like olive oil) or polyunsaturated (like corn oil) fat. They ranged in duration from one week to 3 months. Four of the five studies found that fat quality did not affect insulin sensitivity, including one of the 3-month studies.

The fifth study, which is the one that's nearly always cited in the diet-health literature, requires some discussion. This was the KANWU study (2). Over the course of three months, investigators fed 163 volunteers a diet rich in either saturated fat or monounsaturated fat.
The SAFA diet included butter and a table margarine containing a relatively high proportion of SAFAs. The MUFA diet included a spread and a margarine containing high proportions of oleic acid derived from high-oleic sunflower oil and negligible amounts of trans fatty acids and n-3 fatty acids and olive oil.
Yummy. After three months of these diets, there was no significant difference in insulin sensitivity between the saturated fat group and the monounsaturated fat group. Yes, you read that right. Even the study that's selectively cited as evidence that saturated fat causes insulin resistance found no significant difference between the diets. You might not get this by reading the misleading abstract. I'll be generous and acknowledge that the (small) difference was almost statistically significant (p = 0.053).

What the authors decided to focus on instead is the fact that insulin sensitivity declined slightly but significantly on the saturated fat diet compared with the pre-diet baseline. That's why this study is cited as evidence that saturated fat impairs insulin sensitivity. But anyone who has a basic science background will see where this reasoning is flawed (warning: nerd attack. skip the rest of the paragraph if you're not interested). You need a control group for comparison, to take into account normal fluctuations caused by such things as the season, eating mostly cafeteria food, and having a doctor hooking you up to machines. That control group was the group eating monounsaturated fat. The comparison between diet groups was the 'primary outcome', in statistics lingo. That's the comparison that matters, and it wasn't significant. To interpret the study otherwise is to ignore the basic conventions of statistics, which the authors were happy to do. There's a name for it: 'moving the goalpost'. The reviewers shouldn't have let this kind of shenanigans slide.

So we have five studies through 2008, none of which support the idea that saturated fat reduces insulin sensitivity in non-diabetics. Since the review paper was published, I know of one subsequent study that asked the same question (3). Susan J. van Dijk and colleagues fed volunteers with abdominal overweight (beer gut) a diet rich in either saturated fat or monounsaturated fat. I e-mailed the senior author and she said the saturated fat diet was "mostly butter". The specific fats used in the diets weren't mentioned anywhere in the paper, which is a major omission**. In any case, after 8 weeks, insulin sensitivity was virtually identical between the two groups. This study appeared well controlled and used the gold standard method for assessing insulin sensitivity, called the euglycemic-hyperinsulinemic clamp technique***.

The evidence from controlled trials is rather consistent that saturated fat has no appreciable effect on insulin sensitivity.

Why Are We so Focused on Saturated Fat?
Answer: because it's the nutrient everyone loves to hate. As an exercise in completeness, I'm going to mention three dietary factors that actually reduce insulin sensitivity, and get a lot less air time than saturated fat.

#1: Caffeine. That's right, controlled trials show that your favorite murky beverage reduces insulin sensitivity (4, 5). Is it actually relevant to real life? I doubt it. The doses used were large and the studies short-term.

#2: Magnesium deficiency. A low-magnesium diet reduced insulin sensitivity by 25% over the course of three weeks (6). I think this is probably relevant to long-term insulin sensitivity and overall health, although it would be good to have longer-term data. Magnesium deficiency is widespread in industrial nations, due to our over-reliance on refined foods such as sugar, white flour and oils.

#3: Sugar. Fructose reduces insulin sensitivity in humans, along with many other harmful effects (7).

As long as we continue to focus our energy on indicting saturated fat, it will continue distracting us from the real causes of disease.

* For the nerds: euglycemic-hyperinsulinemic clamp (the gold standard), insulin suppression test, or intravenous glucose tolerance test with Minimal Model. They didn't include studies that reported HOMA as their only measure, because it's not very accurate.

** There's this idea that pervades the diet-health literature that all saturated fats are roughly equivalent, all monounsaturated fats are equivalent, etc., therefore it doesn't matter what the source was. This is beyond absurd and reflects our cultural obsession with saturated fat. It really irks me that the reviewers didn't demand this information.

*** They did find that markers of inflammation in fat tissue were higher after the saturated fat diet.